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Abstract. We construct models describing interaction between a spin s and a single bosonic mode using a
quantum inverse scattering procedure. The boundary conditions are generically twisted by generic matrices
with both diagonal and off-diagonal entries. The exact solution is obtained by mapping the transfer matrix
of the spin-boson system to an auxiliary problem of a spin-j coupled to the spin-s with general twist of
the boundary condition. The corresponding auxiliary transfer matrix is diagonalized by a variation of the
method of Q-matrices of Baxter. The exact solution of our problem is obtained applying certain large-j
limit to su(2)j , transforming it into the bosonic algebra.

PACS. 02.30.Ik Integrable systems – 32.80.-t Photon interactions with atoms – 03.75.Gg Entanglement
and decoherence in Bose-Einstein condensates

Introduction

Models representing interactions between a single bosonic
mode and spin degrees of freedom find application in many
different contexts. In atomic physics they describe atoms
interacting with electromagnetic field [1] and many phe-
nomena like spontaneous emissions in cavity [2] and Rabi
oscillations [3] in two-level atoms are captured by an im-
portant representative of the models mentioned above, the
Jaynes-Cummings (J-C) model [4]. Recently the J-C dy-
namics was intensively studied in the research field of
ions in harmonic traps [5] and then in quantum computa-
tion [6]. Finally this kind of models found applications in
quasi-2D semiconductors in transverse magnetic field [7].

Toy model Hamiltonians representing a single bosonic
mode interacting with a spin s are of the following type

H = Hs−ph + γ
(
S+a† + S−a

)
(1)

where Hs−ph = ωa†a + αSz + β
(
S+a + S−a†); opera-

tors a† and a are bosonic operators that commute with
spin operators Sv, v = {z,±}. The model (1) with γ = β
was originally proposed for quantum optics purposes to
describe a dipole-like interaction in atoms-radiation sys-
tems and it is known as the Tavis-Cummings (T-C)
model [8]; the model reduces to the J-C one for s = 1/2. In
solid state physics models of type (1) can describe certain
quantum circuits [10,11].
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There are two cases in which the model can be solved
analytically: i) In the limit s → ∞ there are exact re-
sults [12]. They were applied to study the entanglement
across the quantum phase transition between normal to
super-radiant phase [13]. ii) For “single photon” interac-
tions the model can be simplified employing the Rotating
Wave Approximation (RWA) that neglects the so called
“counter rotating” terms: S+a†, S−a. Within the RWA
the model (1) can be solved exactly [4,8,9]. For generic pa-
rameters α, β, γ, ω, and for finite s the model, as it stands
in equation (1), is non-integrable. Merging the model into
the main stream of the Quantum Inverse Scattering (QIS)
method [14] constitues often a guide to discover unsus-
pected exactly solvable models with sufficiently generic
interaction. According to this method the Hamiltonian
is obtained as output of the procedure that remarkably
ensures the integrability of the theory. In the simplest
cases the QIS method provide integrable Hamiltonians af-
ter periodic boundary condition are imposed. The vari-
ety of the integrable models can be considerably enriched
by considering more general boundary conditions [15]. By
this is meant that the monodromy matrix is multiplied
by non-trivial matrices that ultimately cause the presence
of boundary terms in the Hamiltonian. Of interest in the
present paper is the case of constant boundary matrix; this
realize the, so called, twisted boundary conditions. For the
type of models under consideration the QIS method was
employed in references [16–19] where nonlinear generaliza-
tions of Hs−ph were studied. These generalizations were
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obtained by twisting the boundary conditions. The twist
matrices were chosen as the same diagonal matrix for both
the bosonic and spin degrees of freedom; finally in a cer-
tain sense (specified below) they are classical. As a result,
although nonlinear, these models contain the standard in-
teraction. Here a more general interaction (and possibly
counter-rotating terms) are obtained applying more gen-
eral boundary conditions: the twist matrices KB and KS

are non-diagonal, different for the boson and for the spin,
and of “quantum” nature (see (5)) [20]. The Hamiltonian
we found is equation (8). The QIS method pave the way
towards the exact solution of the theory through Bethe
Ansatz. In the cases where there exist an obvious “ref-
erence” state a direct (algebraic) Bethe Ansatz approach
can be applied. For the model we found here, however,
there is no simple vacuum state since (8) does not com-
mute with Sz + a†a. A standard route to attack the exact
solutions of such kind of spectral problems is to apply the
technique that Baxter [21] invented to obtain the eigenval-
ues without knowledge of the eigenstates. We obtain the
eigenvalues (the calculation of the exact eigenstates will
be the object of a future publication) in the following way.
We first define an auxiliary problem consisting of two spins
with two distinct representations j and s; the boundary
conditions are generically twisted; the spin j is affected by
an “impurity” ν. We diagonalize the auxiliary problem by
adapting the Baxter method to it. Then the solution of
the spin-bosonic problem is obtained performing certain
j → ∞ limit (see (13)) in the results for the auxiliary
spin-spin problem. The eigenvalues are given in (21) and
the parameters λk are fixed by (22).

The paper is laid out as follows. In the next section we
derive the integrable model. In Section 3 the exact solution
is obtained. The Section 4 is devoted to our conclusions.

Integrability

The starting point of the QIS method is to define
quantum Lax matrices L(λ) and a scattering ma-
trix R(λ) satisfying the Yang Baxter (YB) equation:
R(λ − µ)L(λ) ⊗ L(µ) = L(µ) ⊗ L(λ)R(λ − µ), where λ is
the spectral parameter. For the present case, the Lax op-
erators L we consider [17] are

LS(λ) :=

(
λ − ηSz ηS+

ηS− λ + ηSz

)

, (2)

LB(λ) :=
(

λ − ∆ − η−1 − ηa†a a†
a −η−1

)
, (3)

each satisfying the YB equation with: R(λ; η) = η1l⊗ 1l +
λIP, where η ∈ R and IP is the permutation: IPA ⊗ BIP =
B ⊗ A. The monodromy matrix is

T (λ) = KBLB(λ)KSLS(λ), (4)

where KB and KS are C-number matrices that produce
boundary terms (without “internal dynamics”, the ma-
trices K not depending on λ). Notice that we have two

different boundaries each for the spin and for the bo-
son. In references [17,18] KB ≡ KS is assumed; the
T-C model (without counter rotating terms) Hs−ph is ob-
tained for η → 0. The matrix T (λ) fulfills the YB rela-
tion: R(λ − µ)T (λ) ⊗ T (µ) = T (µ) ⊗ T (λ)R(λ − µ), due
to the fact that [R, KB ⊗ KB] = [R, KS ⊗ KS ] = 0 holds
for any numeric matrix because of the sl(2) symmetry of
the R-matrix. The transfer matrix is defined as t(λ) :=
tr(0)T (λ) where tr(0) means trace in the auxiliary space.
t(λ) is a generating functional of integrals of motion since:
[t(λ), t(µ)] = 0. For the present case the transfer matrix
can be chosen as a polynomial in η: t(λ) =

∑h
l=−g ηltl(λ);

then the coefficients of [t(λ), t(µ)] =
∑2h

l=−2g ηlCl(λ, µ)
vanish at any η-power. The following assumption is cru-
cial for our purposes: The entries of the matrices K depend
on η

KX ij = K
(0)
X ij + K

(1)
X ijη + . . . , X = {B, S}. (5)

The parameter η is usually called “quantum parameter”
since it controls the limit how to recover the classical scat-
tering matrix r(λ) from the matrix R(λ). In this sense our
matrices K in (5) describe “quantum systems” which we
couple to the the boson and to the spin at the boundary
(twist matrices that are independent on η might be con-
sidered as classical boundaries). In brief, the main idea of
our procedure is to play with the boundaries K in such a
way that Cl(λ, µ) = 0 ⇔ [tl(λ), tl(µ)] = 0 for certain l. In
order to obtain the model we are interested in, the degree
and the coefficients of the polynomials are fixed such that:
i) tm(λ) describes an integrable model, then tl(λ) must be
C-numbers for all l < m; ii) the model results containing
the counter-rotating terms; iii) the obtained operator is
Hermitian. All these conditions translate in a system of
equations for the entries of the matrices K; we shall see
that these parameters will be the coupling constants of the
Hamiltonian. It turns out to be sufficient to consider the
entries of the K matrices to be linear in η. Such entries
are restricted to

K
(0)
B 11 = K

(0)
B 22, K

(0)
S 11 = K

(0)
S 22, K

(0)
B 21 = K

(0)
B 12,

K
(0)
S 12 = K

(0)
S 21, K

(0)
S 12 = −K

(0)
B 21K

(0)
S 22

K
(0)
B 11

, (6)

K
(1)
S 11 =

K
(1)
B 22K

(0)
S 22

K
(0)
B 11

+
K

(0)
B 11

K
(0)
B 12

(K(1)
S 21 − K

(1)
S 12)

− K
(0)
S 11

K
(0)
B 12

(K(1)
B 12 − K

(1)
B 21) +

K
(0)
S 22

K
(0)
B 11

K
(1)
B 11 − K

(1)
S 22.

We take t1(λ) as the Hamiltonian

t1(λ) .= H = W (λ)Sz + λ(U + V )a†a

+ 2
[
Y +

√
UV (∆ − λ)

]
Sx + Zλ(a + a†)

(7)

−U(aS+ + a†S−) + V (a†S+ + aS−) − 2
√

UV (a + a†)Sz,
(8)
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where the couplings are

W (λ) = − (U + V )Z√
UV

+ (V − U)
(

∆ − λ − Y√
UV

)
, (9)

U = −K
(0)
B 22K

(0)
S 22, V = −K

(0)
B 22(K

(0)
S 21)

2/K
(0)
S 22 (10)

Y = K
(0)
B 21

(
K

(1)
B 11K

(0)
S 21/K

(0)
B 22 − K

(1)
S 21

)

− K
(0)
B 12K

(1)
S 22 − K

(0)
B 22K

(1)
S 12, (11)

Z = Y + K
(0)
B 22

(
K

(1)
S 12 + K

(1)
S 21

)
+ 2K

(1)
B 22K

(0)
S 21.

(12)

The coupling constants obey (9) for the model to be in-
tegrable; parameters ∆, λ, X , Z can be set freely; the
quantity UV must be positive. Nevertheless the rotat-
ing and counter-rotating terms can be adjusted to have
the same sign by acting on the operators: S− → S−ei π

2

and a → aei π
2 ; the third, fourth and last terms in equa-

tion (8) are transformed accordingly. We observe that the
simultaneous presence of rotating and counter-rotating
terms preserves the integrability only if a further term
(a + a†)Sz appears in the model (the term a + a† can
be transformed out by a translation: a → a + ξ with
ξ = −Z/(U +V ); the coefficients of Sx and Sz are shifted
by ξ(U − V ) and −2ξ

√
UV respectively). Restricting the

boundary conditions: KB = KS (non-diagonal) induces
the further constraint U = V . In this case our model re-
duces to the Rashba Hamiltonian in a constant magnetic
field [22] (the bosonic number labeling the Landau levels;
see also Ref. [23]).

The constants of motion of (8) are t1(0) and ∂λt1(λ)
(only two of H , t1(0), ∂λt1(λ) are independent). ∂λt1(λ)
can be easily diagonalized: U∂λt1(λ)U−1|φ〉 = ((U +
V )(n + m)−M−)|φ〉. In the |φ〉 basis the Hilbert space of
the Hamiltonian blocks into invariant subspaces labelled
by the bosonic number n ≥ 0 and with Sz|φ〉 = m|φ〉;
M−

.= Z2/(U + V ). This will be used to classify the exci-
tations in the Bethe equations (22).

Exact eigenvalues

To diagonalize the model (8) we define an auxiliary in-
homogeneous spin problem. We use the property that a
spin j-su(2) can be contracted to the Weyl-Heisenberg
algebra [24] through the singular limit ε → ∞ of a Dyson-
Maleev transformation

{
−ηJ−,

1
ηε2

J+, Jz

}

→

{
a†, a, −a†a − ε2

2

}
; (13)

such a limit corresponds to j = −ε2/2 → ∞. The bosonic
Lax matrix is thus expressed as limit of a spin-j Lax
matrix:

LB(λ) = lim
ε→∞

(
− 1

ηε

)
K(ε)σyσzLJ(λ − ν)σy , (14)

where K(ε) = diag
{
ηε, (ηε)−1

}
and

LJ(λ − ν) =
(

λ − ν − ηJz ηJ+

ηJ− λ − ν + ηJz

)
, (15)

the “inhomogeneity” parameter being set to

ν = −ηε2/2 + η−1 + ∆. (16)

Thus the monodromy matrix equation (4) can be written
as T (λ) = limε→∞ Ta(λ) where Ta is an auxiliary mon-
odromy matrix defined as

Ta
.= KJLJ(λ − ν)σyKSLS(λ), (17)

with KJ
.= −1/(ηε)KBK(ε)σyσz . ta = tr0{Ta} can be

diagonalized adapting the Baxter method [21] for off-
diagonal twisted spin-s chain [25]. In the present case the
“chain” consists of only two sites; the twist matrices are
distinct and containing both diagonal and off-diagonal en-
tries. The details of the calculations will be reported else-
where. The Baxter equation reads

ta(λ)Q(λ) = R(∓) (λ − sη)(λ − ν − jη)Q(λ + η)

+ R(±) (λ + sη)(λ − ν + jη)Q(λ − η), (18)

where R(±) .= 1
2

[
tr(KJσyKS) ± ((tr(KJσyKS))2 +

4 det(KJKS))1/2
]
. The quantities Q(λ) are (2s+2j+2)×

(2s + 2j + 2) matrices and constructed in the standard
way [21,25]; they fulfill [Q(λ), Q(µ)] = [Q(λ), ta(λ)] = 0.
Equation (18) fixes the eigenvalue τa(λ)(±) of the transfer
matrix

τa(λ)(±) = R(∓) (λ − sη)(λ − ν − jη)
2s+2j∏

i=1

λ − λi + η

λ − λi

+ R(±) (λ + sη)(λ − ν + jη)
2s+2j∏

i=1

λ − λi − η

λ − λi
,

(19)

where the variables λj are solutions of the equations

R(∓)

R(±)

(λk − sη)(λk − ν − jη)
(λk + sη)(λk − ν + jη)

=
2s+2j∏

i=1
i�=k

λk − λi − η

λk − λi + η
,

k = 1, . . . , 2(s + j). (20)

To obtain the solution of the bosonic problem we perform
the algebraic contraction at the level of equations (20).
This can be done expanding R(±) =

∑
m R

(±)
2m /(εη)2m and

taking into account of equation (16); a generalizations of
the Bethe equations found in [17] are obtained. By a fur-
ther expansion R

(±)
2m =

∑2
n=0 R

(±)
2m,nηn in the latter equa-

tions, the eigenvalues E of the model (8) can be obtained
as their linear terms in η:

E = E0(λ) +
2s+n∑

j=1

1
λ − λj

[

− λx−
0

2s+n∑

l �=j

1
λj − λl

− λ(λ − ∆)y−
0 − λx+

1 + sx−
0

]

, (21)
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where E0(λ) = (λ − ∆)(λy+
1 + sy−

0 ) − λx−
2 + sx+

1 ; with
xα

n = R
(∓)
0,n − αR

(±)
0,n − R

(∓)
2,n and yα

n = R
(±)
0,n + αR

(∓)
0,n α =

{+,−}. The quantities λk are fixed by

sx−
0

λk
− (λk − ∆) y−

0 = x−
0

2s+n∑

l �=k

1
λk − λl

+ x+
1 , (22)

where k = 1, . . . , 2s + n; the quantum number n labels
the excitations as discussed before. For generic 2s + n the
equations above can be solved numerically. Alternatively
the quantities λk can be obtained as roots of the polyno-
mial P (λ) =

∏2s+n
s=1 (λ − λs) satisfying

λP ′′(λ) +
2

x−
0

[
y−
0 λ2 +

(
y−
0 ∆ + x+

1

)
λ − sx−

0

]
P ′(λ)

− [ζ − (2s + n)λ] P (λ) = 0 (23)

where ζ is fixed by imposing that λ = 0 is a simple root
of λP (λ): ζ = sx−

0
P ′(0)
P0 [17].

Conclusions

By the Quantum Inverse scattering method we have con-
structed integrable T-C models with twisted boundary
conditions. The twist matrices are generic in the sense that
they contain both diagonal and non-diagonal entries. They
are responsible for the presence of rotating and counter-
rotating terms in the Hamiltonian. The spectrum is com-
puted through the Baxter method. As far as we know
this method is applied to spin-boson systems for the first
time; the subtleties related to the bosonic limit, recovered
for infinite spin length are dug out. Integrability and ex-
act solution can be obtained provided that a further term
∝(a + a†)Sz is considered. Interestingly enough we found
a global rotation of the spin/bosonic degrees of freedom
such that the rotating terms (alternatively, the counter-
rotating terms) are compensated out [29]. We conjecture
that “true” counter-rotating terms in the Tavis-Cummings
model could be inserted considering dynamical bound-
aries: KX = KX(λ); alternatively one should consider
XY Z symmetry of the scattering matrix. These terms
serve to a reliable description of certain systems in quan-
tum optics [26,27] or to model the spin-orbit interaction
in heterostructures where the simultaneous Rashba and
Dresselhaus terms are important [30]. Our paper could
pave the way to construct integrable Hamiltonians for such
physical situations. As immediate application, we notice
that the Hamiltonian (8) describes the quantum circuit of
Figure 1. Two coupled dc-Superconducting Quantum In-
terference Devices (SQUIDs) are coupled inductively. The
primary device p is intended built with large Josephson
junctions to be described by a classical SQUID Hamilto-
nian [31] (whose degrees of freedom are, then, bosonic)
flowed by the current Ip (this circuit plays the role of the
LC resonant circuit of Ref. [11]); the secondary SQUID s,
with small junctions, is accommodated inside the primary
and pierced by the magnetic flux: Φ = φext + LpIp (Lp

V

C

g

C g

Φ

p s

Fig. 1. The quantum circuit described by the
Hamiltonian (24). The primary device p is a resonant
circuit controlling the flux-qubit s by the inductive coupling
caused by Φ = φext + LpIp.

is the inductance of the circuit). Thus the secondary is a
quantum SQUID controlled by the classical one. The effec-
tive Josephson coupling of the quantum SQUID depends
on the flux Es

J (Φ) � Es
J (φext)+ L̃pIp . This kind of setups

are intensively studied as controllable flux-qubits [32,33]
to data-bus transferring in many protocols of quantum
computation [11]. The circuit Hamiltonian is

Hcircuit = ωpa
†a − 2Es

J(φext)Sx − 2L̃p(a + a†)Sx

− iM(a − a†)Sy + 2VC(a + a†)Sz (24)

where ωp is the “frequency” of the primary SQUID (or
the natural frequency of the resonant circuit [11]), VC

is due to the capacitive coupling between the SQUID’s;
Eα

J , Eα
C , α = {p, s} are related respectively to the Joseph-

son and the charging energies of the junctions and M
is the mutual inductance; the gate voltage Vg is tuned
to the charge degeneracy point [31]. For generic circuit-
parameters the dynamics of the qubit is intricated by the
presence of the counter-rotating terms, making the device
not reliable in the communication protocols. Our calcu-
lation suggests how the circuit parameters can be tuned
to reproduce our model (8); for it the dynamics is not
altered by the presence of the counter-rotating terms. Us-
ing this trick the qubit dynamics can be effectively “pro-
tected” at any frequency ωp. The relation between the
circuit-parameters and coefficients in the Hamiltonian (8)
is: {ωp, E

s
J , 2L̃p, M, VC} → {λ(U + V ), 2Y, U + V, U −

V,−2
√

UV } (Z = 0 is set for simplicity), implying that

VC should be tuned to VC =
√

M2 − 4L̃p
2
/2 to make un-

effective the counter-rotating terms.
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